
L D-A 74 94 6 RESEARCH ON PROBLEM-SOLVING SYSTENS(U) SRI ji
I INTERNATIONAL MENLO PARK~ CA 0 E WILKINS 12 OCT 6

AFOSR-TR-86-2i96 F49628-85-K-0691
UNCLASSIFIED F/ G /4 UL

IIIIIIIIIIIII

La

L.

_!11.25 ii1111________ IIIII ulj~I .

(CROCOPY RESOLUTION TEST CHART

SE AD-A 174 940
DOCUMENTATION PAGE

i REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unc lassi fied

2.. SEC
; R

I
T Y

CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
21b. DECLASSIFICAT ON/DOWNGRAD NG SCHEDULEun mte

unlimited
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

__ _m. 8 -FOSR86 - 2 19 0
6&, NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

i ll applicable p

SRI International AFOSR/NM

6c. ADDRESS eCity. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

333 Ravenswood Ave Bldg 410
Menlo Park, CA 94025 Bolling AFB DC 20332-6448

8es. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION If applicable)

AFOSR I _NM F49620-85-K-0001

k. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

Bldg 410 PROGRAM PROJECT TASK WORK UNIT

Boiling AFB DC 20332-6448 ELEMENTNO. NO. NO. NO.

61103F 2304 A7

1.TITLE dinclude Security Clauttication, cr OR rr--

12. PERSONAL AUTHOR(S)

Dr. DavidNWilklns
13.. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo.. Day) 15. PAGE COUNT

Final T FROM85NN TO gino3(1

1E. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR.

19. ABSTRACT (Continue on reverse if neceuary and identify by block number)

--.-.

20. DISTRIBUTION/AVAILAB,LITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED E SAME AS RPT, E OTIC USERS 31

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c OFFICE SYMBOL
(Include 4rea Code)

Dr. S ili1111 M1t (N V)) 740 -7 1 2%I m

DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

% A . ..

AFOSR.Tit. 8 6 - 2 1 90

RESEARCH ON PROBLEM-SOLVING SYSTEMS

Annual Report
Covering Period October 1, 1985 to September 30, 1986

JOctober 13, 1986

By: David E. Wilkins, Computer Scientist
Representation and Reasoning Group

Artificial Intelligence Center
*r"'V Computer and Information Sciences Division

Prepared For:

Air Force Office of Scientific Research
Building 410
Bolling AFB, Washington, D.C. 20332 Accession For
Attention: Dr. Vincent Sigillito NTIS GRA&I

LZII 0T T' T A'instrn r,.'j E-4 l

Contract No. F49620-85-K-0001
SRI Project 7898 Bv_

Di t"

Av w : tly Codes

Iind/or

APPROVED

Michael P. Georgeff, Program Director
Representation and Reasoning Group

Stanley J. Rosenschein, Director
Artificial Intelligence Center

Fp

International.

-, ., , , .
, , -.-.- ,A'''''''''' '""''"''"''''''''""""""""""''"""""""""" . ; .,. , . , . v 'r-".", . . -', ,'-"-"," . - *"-:, ' . . , - . . ,. .' -. . . - -. ' ' ,. r J - - , 4 z , l t ¢ , .' , . • - 2 . .

1 Introduction

Research on planning and problem-solving systems was begun at SRI International (SRI) in

September 1979 under AFOSR sponsorship (SRI Project 8871, Contract No. F49620-79-C-

0188). The current project (SRI Project 7898, Contract No. F49620-85-K-0001) continues

this work. The research performed during previous years of the project is described in papers

that appeared in the April 1984 issue of the Artificial Intelligence Journal [5] and the February

1985 issue of the Computational Intelligence Journal [7], as well as in previous annual reports.

This report describes the research conducted during the past year.

Our main task under this program is to develop powerful methods of representing, gen-

erating, and executing hierarchical plans that contain parallel actions. Execution involves

monitoring the state of the world and, possibly, replanning if things do not proceed as ex-

pected. Over the last few years, we have designed and implemented a system called SIPE

(System for Interactive Planning and Execution Monitoring) [5], the purpose of which is to

demonstrate the heuristic adequacy of our approach to this problem. Our basic approach

is to work within the hierarchical-planning methodology, representing plans in procedural

networks,- as has been done in NOAH [4] and other systems. Several extensions of pre-

vious planning systems have been implemented, including the development of a perspicuous

. formalism for describing operators and objects, the use of constraints for the partial descrip-

tion of objects, the creation of mechanisms that permit concurrent exploration of alternative

plans, the incorporation of heuristics for reasoning about resources, and implementation of a

deductive capability.

Our research this year has concentrated on improving SIPE to provide a high-level rea-

soning capability for a mobile robot, such as the one currently being developed at SRI [3].

2 Using SIPE to Control a Mobile Robot

We have used SIPE at SRI to generate plans for a mobile robot [8]in an indoor environment

consisting of hallways and offices. The problem with using such plans in the real world is

the interface between the lower-level control routines and the planner. In the past year, we

have designed this interface in more detail, and made improvements in SIPE in an effort to

implement part of this design. Our interface design is described in detail in the enclosed

technical note [8], and briefly summarized here.

The scope of our research does not include the development of lower-level control systems.

Our goal is to investigate the utility of SIPE as the highest-level planning system in an

integrated robot. Our concern is to develop a system that can work in the short term on

sir,ple but useful tasks in a constrained indoor environment, rather than an ultimate design

for a completely robust, intelligent robot.

In particular, we do not want to commit ourselves to particular representations or designs

for the lower-level systems. Instead, we are using a heuristic interface language that requires

SIPE to plan to a suitably low level before executing actions, and has SIPE accept suitably

low-level feedback from other systems. We want the interface language and its extensions

to use concepts that can be accommodated by diverse low-level systems, so that we can

take advantage of a diversity of research results, rather than commit ourselves to a single

approach.

Our design for interfacing SIPE with low-level controllers involves treating them as pro-

grammable coroutines. There will be a bidirectional interface language for each controller

that will allow the planner to instruct and program the controller, while the latter, in turn,

will be able to inform and instruct the planner. The main idea is that the controllers will

not be simply subroutines to be called, but will be full-fledged routines, running concurrently

2

.W.

with SIPE, that can both send and receive information and requests. Thus, a sensor can

monitor the world continuously and alert the planner when a certain condition arises. The

planner will be able to program such a sensor by telling it what conditions are expected and

which unexpected conditions, if they occur, should generate interrupts.

During the past year we attempted to implement an interface with a simple sonar sensor.

The language described in Section 4 defines our target interaction between the planner and

the sonar monitor. Some effort was expended in studying the work of others to determine if

a sonar monitor with these capabilities already existed. Our conclusion was that the problem

of detecting walls, doors, and objects from sonar readings, while solvable, has not yet been

solved in a robust manner. As described in Section 5, the systems we investigated were easily

confused in a rich, real-world environment. For this reason, we have tested SIPE on our

robot simulator, which simulates execution of actual robot motor commands and displays the

resulting motion of the robot. SIPE is given (by the user) descriptions of unexpected world

states, and correctly updates the plan being executed to react to these dynamic changes. This

testing on the simulator has stimulated several extensions to the system, which are briefly

described in the next section.

3 Summary of Accomplishments

Testing the system with the robot simulator was sufficiently challenging to produce a number

of improvements in SIPE that will be necessary for controlling a mobile robot. In addition,

-' several ideas that were not implemented were explored. These ideas and improvements are

summarized here, with the most important ones described in more detail either in the enclosed

technical note [8]or later in this document.

3

b
° "

.

-. - -A - , .- . .

* The replanner, which initially operated automatically, can now by operated interac-

tively as well. This is advantageous for debugging new applications and controlling the

system.

* The replanning algorithm was improved as described in detail in section 6. Several

ideas not implemented are also discussed.

e The ability to intermingle planning and execution within SIPE was implemented. This

enabled the planner to produce an executable plan for our sample problem in 9 seconds

instead of 35, as described in detail in [8].

* Last year, we identified a problem with hierarchical planning. During this past year,

three different solutions to it were implemented in SIPE and compared, as described in

detail in [8].

e SIPE now permits certain goals to be flagged as desirable for being accomplished by

instantiation. In general this is not done, because choosing a wrong instantiation may

prevent a solution from being found, but letting the user invoke this behavior when

desired makes the system more flexible.

* SIPE now invests more effort in checking consequences of PRED constraints when

matching two variables. This procedure results in more expensive matches, but also

cuts down on the search space by finding incompatible constraints more quickly. This

is discussed in more detail in Section 7.

* Many changes were made to improve efficiency, including checking for subsumption

of constraints. Timing tests were done and substantial gains were realized by these

changes. They are discussed in more detail in Section 8.

.,4
,°4

- .C'K >

* SIPE's deductive capability was extended by allowing universal variables in the pre-

conditions. This is a powerful extension and is described in detail in [8].

e An alternative implementation of SIPE was created that uses flavors (the Symbolics

object-oriented programming package) instead of arrays as its basic representation.

The flavor version was slower but may prove desirable in the future because of its

modifiability.

o A graphics package was implemented for SIPE, so that plans can be viewed graphi-

cally on the screen. Graphics are useful for checking the correctness of plans that are

produced and for debugging both the system and applications that are done in the

system.

o Considerable effort was invested in studying the robotics and low-level perception work

of others to determine an appropriate interface for SIPE. The results are described in

Section 5.

4 Sonar Interface

Once SIPE has activated the sonar controller, the latter runs as a separate routine and

may send information to the planner at any time. Such information usually includes the

estimated location of the robot and some description of why the action being performed is

not proceeding as expected. The description may include the robot's power being low, the

robot being incapacitated for unknown reasons, an object being discovered with blocks the

path, a door being closed, or failing to observe an object that was expected to be in view.

Upon receipt of such information, SIPE will begin planning and may issue new instructions

to the controller.

4-.5

f.-

%

4% '4 4 ..,' ' ' . . 4 . .

In our indoor environment, SIPE gives the following primitive commands to the sonar

controller:

o GO FORWARD distance

In this case the controller does not try to track along a wall. It simply moves forward
the given distance. It may veer slightly one way or other to avoid an object.

o TURN theta

This primitive simply turns the robot the specified amount while it is standing in place.

• *"GO TO NEXT DOOR theta side distance

This command assumes you are in a hall, and tries to go in direction theta until it

sees a door on the specified side. The distance the robot is expected to travel can be

provided if the sonar controller can make use of this information.

o APPROACH NEXT OBJECT theta distance
The robot should approach the nearest object in the direction theta, and proceed until

the object is touching a bumper. This moves the robot slowly near the end of its
travel and inhibits lower-level routines whose purpose is to avoid collisions. Again, the

expected distance to the object can be provided.

o FOLLOW WALL theta distance

The controller attempts to follow a wall (in the general given direction) down a hallway

for a given distance. It may veer as far from side to side as is necessary to get around
obstacles. This rather complex subsystem will involve special algorithms for obstacle

avoidance. Work on such algorithms is ongoing at several places (e.g., [1,6]), and SIPE

should be able to make use of developments in this area. SIPE only uses this command
if, to the best of its knowledge, the hallway is passable. Otherwise, SIPE will plan to
clear the hallway or to pursue another means of achieving its goals. Thus the obstacle-

avoidance algorithm will often be addressing solvable problems.

-. " FOLLOW WALL TO DOOR n theta distance

This is the same as FOLLOW WALL except that the controller is expected to recognize

doorways as it proceeds down the hall, and stop at the nth one down the hall.

o GO THROUGH DOOR theta distance

This is the most complicated primitive. It may not be reasonable to do this action
with only sonar sensors, because the robot is nearly as wide as a standard door. Visual

input may be needed to align the robot with the door. The robot should be in front

of a door, which is in direction theta. This routine should center the robot in front of

the door and go forward through the door, assuring clearance on both sides, until the

center of the robot is the given distance through the door.

6

~4%

. FIND NEXT DOOR theta

- This primitive assumes that the robot is in a hall but may otherwise be lost. It attempts

to go in direction theta until it finds a door on either side. It stops at the first door,

and describes its expected location.

e FIND NEXT OBJECT theta (optional distance)

This primitive tries to go in direction theta until its path is blocked by an object, and
describes its expected location. This command is also useful when the robot is lost.

5 Low-Level Sonar Perception

During the past year, we investigated the possibility of implementing the above interface in a

robust way so that our robot could be controlled in our building without special constraints

on its environment. If we used only sonar sensors, this problem proved to be too difficult to

solve with our resources. The sonar data are noisy, and we found it hard to determine which

detected lines are walls, which are doors, and which are objects in the hallway. The robot

can easily become confused when people walk by, when it turns corners, or when the hallway

is cluttered.

Two approaches being developed concurrently here at SRI were investigated as possibil-

ities for the sonar controller. One was the robot control system implemented in PRS [2]by

Georgeff et al. While this system was used to control the robot, it made many limiting

assumptions (e.g. all hallways are the same width, all corners are rectangular, all doors are

open and unobstructed) and was easily confused (e.g. when people walked by). Once it be-

came confused, it was not able to recover. We decided that more useful improvements could
A.

be added to the planner by testing it on the robot simulator.

The other approach being pursued at SRI is the situated-automata-based system of Rosen-

schein and Kaelbling [3]. Their system is proving to be robust and reliable at following hall-

ways, but cannot yet count doors or go through them. This system appears to provide a

7

A -k

Ve

'2'~

good basis for our envisioned sonar controller, but the implementation was not finished in

time for our project to take advantage of it.

6 Improving the Replanning Algorithm

Below we discuss many ideas that were considered on how replanning should backtrack after

the initial attempt at replanning fails. Problems that were encountered in the mobile robot

domain motivated much of this endeavor. The conclusion we reach in all but the simplest cases

is that the process of intelligently deciding where to replan is too expensive to implement.

Thus, SIPE currently reinitializes the problem in this situation.

The following problem is a motivating example. Suppose the plan calls for walking down

a hall and going through the first door to a conference room. If ,he robot discovers the first

door is blocked, is it possible to replan to use the second door without redoing the part of the

plan that comes after entering the conference room? If so, how do we decide which part of

the plan has to be redone and which part can be kept intact? It is assumed that the planner

knows which node at the most primitive level is causing a problem in the plan, called the

failed node, which in the example might be a node requiring the conference room door to be

unblocked.

Replanning may take place at any level in the hierarchy. A node in a hierarchical plan

defines a wedge [7]. Starting with a node that was expanded by an operator application, a

wedge of the plan is determined by following all its descendant links (in the current context)

repeatedly (i.e. including descendants of descendants, and so on) to the lowest level. The

node originally expanded by an operator application is called the top of the wedge. A wedge

*_ with its top at a high level in the hierarchy will generally contain many lower-level wedges

within itself. To replan a node, SIPE simply replaces the wedge by the node at the top of

8

P"

the wedge and calls the standard planner on the result [7].

6.1 Reinstantiation of Variables

One replanning possibility is to reinstantiate variables without changing anything else in the

plan. For example, when getting screws from a hopper this procedure may be the correct

response when you drop a screw - simply execute the same plan, returning to the hopper

to pick up a different screw. However, the general problem is quite complicated. There are

any number of constraints and instantiations on the plan variables from different parts of the

plan. Reinstantiations involve removing some of these and trying to replace them. However,

there are two problems: (1) it is not easy to determine all the consequencez that have been

propagated from the old instantiation choice (without implementing a truth maintenance

system on top of the planner), and (2) in general, you must reinstantiate a whole subset of

variables to solve the problem, not just one, and it is difficult to pick the correct subset out

of the huge number of possibilities.

One idea we explored for choosing a set of variables used the following algorithm. Consider

the variables in the failed node as possible candidates for reinstantiation. For each one, go up

the hierarchy to the point where the variable was first introduced. This determines a wedge

that in some sense is either causing or signalling the problem. Consider for reinstantiation

only those variables whose instantiations were not forced by choices made inside this wedge.

The intuition behind this approach is that because an instantiation was not forced by this

wedge, the wedge itself might quite likely work without modification on another instantiation

of the same variable. The check for where choices are forced is simple in SIPE, because all

constraints (including instantiation constraints) are posted relative to choice points, and it

is easy to determine which choice points are in a wedge.

Considering the above problems, and the fact that the reinstantiating process is not

9

necessarily that much cheaper than the planning, we did not implement any reinstantiation

beyond that described in [7]. Instead, SIPE relies on popping up to some higher level in the

hierarchical plan and replanning.

6.2 Replanning a Node

To replan a single node, SIPE simply replaces the wedge with the node at the top of the wedge

and calls the standard planner on the result. This process effectively removes many actions

from the plan at the most primitive level. However, there are two problems encountered in

replanning just a single node rather than redoing the entire plan. First, the particular node

must be selected; second, something must be done if the new plan produced causes problems

in subsequent parts of the original plan. We can avoid these problems if we choose an ancestor

of the failed node, high enough in the hierarchy, so that its wedge will contain everything

that must be replanned, thus ensuring that we will produce a correct plan. In our example,

we would like to back up to the goal of getting the robot in the confe-ence room. Backing

up to a more primitive goal than this one will not produce a correct plan, and backing up

further will cause the system to replan more than is necessary.

6.3 Choosing a Wedge

The default solution, resolving the whole problem, is equivalent to backing up to the largest

wedge with the highest root and replanning it. Replanning a node means that we choose a

wedge that is not that high and replan it. However, we would like to pick a wedge that is

high enough (if possible) to ensure success of the replanning. If we do not, we have to explore

a whole search space of possible wedges, where each one may be as difficult as the original

problem. Because it has proven to be difficult to select the proper wedge, SIPE has opted

simply to redo the original plan in most cases rather than explore this search space.

10

One of the algorithms we considered for choosing a wedge entailed going back to the first

node that had an untried operator, i.e. a node that represents a choice point at which the

system has other (as yet untried) choices of which operator to apply. This algorithm does

not give the desired results because the replanning often does not need to apply different

actions. In the rob-t domain, it is frequently the case that the same actions must be done,

but in the altered world state used for the replanning, these same actions will result in

different instantiations for many variables. The ideal wedge for replanning often requires

(in our test domains) applying the same operators that were used in the original plan for a

level or two, but then applying different operators at lower levels. Therefore, applying the

above-mentioned algorithm often results in selecting a wedge that is not high enough in the

hierarchy, which dooms the replanning to failure.

Another attractive algorithm is to return to the node which first introduced the variables

that are the arguments of the failed node. In our example, if the failed node involves the

conference room door being blocked, then going up the hierarchy to a level at which the

door is not mentioned does get us to the ideal replanning level, attempting to get the robot

into the conference room. However, this algorithm often returns all the way to the top. It

is a reasonable solution to the problem of choosing the wedge, and in fact was implemented

in SIPE, but it does not often succeed because of considerations mentioned in the next

subsection.

It is also possible to combine the above two algorithms to ensure a conservative choice of

wedges (in the sense of assuring success in the replanning). Such an algorithm would return

to a higher level of the hierarchy at which all the variables of the failed node disappear, and

then continue up until it finds a node with an untried choice.

-- 1

°1

6.4 Replanning Causing New Problems

Replanning at one point may cause problems in the remaining part of the plan (that we hope

to reuse). SIPE can detect such problems during the replanning process. Problems may

include either phantoms or preconditions that are no longer true. If reusing some part of the

old plan were a high priority, we could overcome this problem by changing the phantoms to

goals, replacing the wedge determined by a precondition (i.e. follow the precondition up to

the level where it was first introduced) with the wedge's root, and calling the normal planner

again. SIPE does not do this; rather, it simply retries the original problem if there are

any problems during the replanning. We chose this course because (1) constantly checking

for these problems and correcting them is time consuming, (2) the occurrence of problems

means less of the old plan is being reused, and (3) there is no guarantee that the plan we are

*- attempting to reuse is part of a valid solution, while starting over guarantees a solution will

be found if one exists.

It might be possible to make use of previous planning when starting over on the problem.

The following idea was explored but not implemented. One could record the operator appli-

cation choices that were made during the original successful planning session and use these

to make operator choices on the second attempt. However, we have not determined how to

record these decisions, or how to make use of this record once something slightly different has

occurred in the planning. We recognize that the correct operator choice is often determined

by different instantiations of variables to which this scheme is not sensitive.

7 Matching Variables with PRED Constraints

PRED constraints in SIPE give a disjunction of sets of instantiations, any one of which can

be used to assure that a particular predicate is made true. When matching two variables, the

12
*4~~m

second of which has a PRED constraint, the system must determine if a set of instantiations

in the PRED constraint will be compatible after these two variables are matched. SIPE used

to simply take the member of the set that corresponds to the first variable, and check whether

it was an acceptable match with the first variable. This was efficient, but permitted invalid

matches (because other members of the set may have incompatible constraints), which would

later cause the search to backtrack past this point after exploring a blind alley. The problem

with checking every member of the set is that this would propagate matches throughout the

system (when PRED constraints in this set are matched recursively). In the worst case,

the system might run through all the constraints each time it matched a variable. This is

computationally unacceptable. Another problem is that loops may be created because the

system may recursively match the two original variables again.

In the mobile robot problem, invalid matches, in addition to allowing the searching of

blind alleys, caused problems in the replanner. The matching algorithm was extended to

check every element in a set of instantiations from a PRED constraint. To avoid the above

problems, this extensive match is only done at the top level of recursive calls to the matcher.

At lower levels of the recursion, the system still goes through the whole set, but this time only

checks the variables that are instantiated (effectively assuming the uninstantiated variables

will be acceptable). This avoids both the problem of needing to check for loops and of the

matching becoming prohibitively expensive.

This more expensive matching algorithm proved to be very worthwhile in the mobile robot

domain, because the rejected matches constrain the search space and minimize problems with

replanning. The idea of checking the instantiated variables at the lower levels of recursion

(instead of simply checking one variable, as was done initially) is critical for achieving our

'.- level of performance,because it is frequently the case that most variables in a problem are

instantiated.

13

-A F....-. . .-.-.

8 Efficiency considerations

Several changes were made to improve the efficiency of the system. The improvements were

significant, as shown in Table 1. The primary change was checking for PRED constraints that

are subsumed by other PRED constraints (i.e. they are already implied by other constraints).

Such subsumed constraints are generated frequently by the system as it continually matches

conditions during the planning process. The matching process can be speeded up considerably

by either not posting subsumed constraints or not retrieving them, because fewer constraints

need to be checked. The goal is to test subsumption in a computationally inexpensive way.

In addition to a disjunction of sets of possibilities, a PRED constraint contains the predi-

cate for which it was originally generated. The subsumption-checking algorithm implemented

during the past year makes use of this as follows. Given two PRED constraints on the same
.4

variable, the two original predicates are matched against each other. If their arguments match

.. exactly or match with universal variables (i.e. without forcing any other instantiations), then

only the more recent PRED constraint need be retrieved, because its set of possibilities will

be included in the other constraint. Note that both constraints must still be posted since

backtracking may eliminate the more recent one while keeping the older one intact. This

subsumption check is inexpensive at retrieval time because an exact match is required (one

never needs to match two uninstantiated variables).

When posting PRED constraints, SIPE now checks for exact matches against previous

PRED constraints (as above), and then compares the two disjunctions. If the constraint to

be added does not further constrain the disjunction, then it can be ignored and not posted

%, at all. In addition, the system now orders the constraints it retrieves, to facilitate efficient

matching.

'Run time is given in arbitrary units.

14

-'a

.

Before Improvements After Improvements

Function Run Time Calls Run Time Calls

Inclusivel Exclusive Inclusive Exclusive

Overall search 195 7 95 7

Matching a condition 152.4 340 76 340
Matching two variables 151.9 78,435 67 44,175

Deducing effects of a node 127 98 67 97
Solving global constraints 10.6 4 3.3 4

Table 1: Efficiency Improvements in SIPE

-.t The performance improvements affected by the changes made here, and others too detailed

to describe, are shown in Table 1. More than three-quarters of the total computation was

originally being used to match two variables, and most of this was done during the process of

deducing effects of a node. The improvements outlined above enabled us to reduce the total

effort and the effort spent on matching variables by more than a factor of two. The effort

spent in solving the global constraint satisfaction problem was reduced by a factor of three.

The number of times that two variables were matched was cut by more than 40 percent,

primarily because of the check for subsumed PRED constraints.

9 Publications and Talks

During the past year, a paper [9]by David Wilkins describing problems with hierarchical plan-

ning was published in the Proceedings of the European Conference on Artificial Intelligence,

and delivered to a large audience at the conference. A paper describing the application of

SIPE to the mobile robot domain was written and accepted for a special issue of the Journal

of Man-Machine Systems. (This paper is also being distributed as an SRI Technical Note

15

d*%

and is enclosed with this report.) David Wilkins participated in the Workshop on Planning

and Reasoning about Action at Timberline, Oregon, in June. This workshop included fruitful

discussion among several of the world's top planning researchers.

a.

.4

.4

-4

| 16

4 .2.>--..,

References

[1] Brooks, R., "A Subdivision Algorithm in Configuration Space for Findpath with Rota-
tion", Proceedings IJCAI-83, Karlsruhe, Germany, 1983, pp. 799-806.

[2] Georgeff, M., Lansky, A. and Schoppers M., "Reasoning and Planning in Dynamic Do-
mains: An Experiment with a Mobile Robot", Technical Note 380, SRI International

Artificial Intelligence Center, Menlo Park, California, 1986.

[31 Rosenschein, S., Fischler, M., and Kaelbling, L., "Research on Intelligent Mobile
Robots", Final Report, Project 7390, SRI International Artificial Intelligence Center,

Menlo Park, California, 1986.

[4] Sacerdoti, E., A Structure for Plans and Behavior, Elsevier, North-Holland, New York,

1977.

[5] Thorpe, C., "Path Relaxation: Path Planning for a Mobile Robot", Proceedings AAAI-

84, Austin, Texas, 1984, pp. 318-321.

* [6] Wilkins, D., "Domain-independent Planning: Representation and Plan Generation",

Artificial Intelligence 22, April 1984, pp. 269-301.

[7] Wilkins, D., "Recovering from Execution Errors in SIPE", Computation Intelligence 1,

February 1985, pp. 33-45.

[8] Wilkins, D., "High-Level Planning in a Mobile Robot Domain", Technical Note 388, SRI

International Artificial Intelligence Center, Menlo Park, California, 1986.

[9] Wilkins, D., "Hierarchical Planning: Definition and Implementation", Proceedings of the

Seventh ECAI, Brighton, England, 1986, pp. 466-478.

17

.- -.:- . .:...: ,.:-;.:..: .:.: :...-.........: :.:.

u- L7 Wum.-.w RE -W." WWWWW-wrwq

